

## FEDERAL PUBLIC SERVICE COMMISSION SPECIAL COMPETITIVE EXAMINATION-2023 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

## **PURE MATHEMATICS**

|                   | OWED: THREE HOURS                                                                                                                                                                                                                                         | MAXIMUM M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |      |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|
| NOTE: (i)<br>(ii) | ONE Question from SECTION-C. AI                                                                                                                                                                                                                           | Control Contro |      |      |
|                   | places.                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |
|                   | Write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper.<br>No Page/Space be left blank between the answers. All the blank pages of Answer Book m<br>be crossed.                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | nust |
| (v)<br>(vi)       | Extra attempt of any question or any part of the attempted question will not be cons<br>Use of Calculator is allowed.                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |
|                   | SECT                                                                                                                                                                                                                                                      | <u>FION-A</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |      |
| Q. No. 1(a)       | Prove that the homomorphic image $\varphi$ (G) of a group G is itself a group.                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (10) |      |
| <b>(b)</b>        | Let G be a group and H, K be its subgroups of finite index. Then prove that                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (10) | (20) |
|                   | $(H : H \cap K) = (G : H)$ if and only if G                                                                                                                                                                                                               | = HK = KH.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |      |
| Q. No. 2(a)       | Let H be a normal subgroup and K a subgroup of a group G then prove that HK is a subgroup of G, $H \cap K$ is normal in K and HK/H $\cong$ K/( $H \cap K$ ).                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (10) |      |
| (b)               | For what value of $\lambda$ do the following homogeneous equations have nontrivial solutions? Find these solutions:<br>$ \begin{pmatrix} (3 - \lambda) & x - y + z = 0, \\ x - (1 - \lambda) & y + z = 0, \\ x - y + (1 - \lambda) & z = 0. \end{cases} $ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (10) | (20) |
| Q. No. 3(a)       | Find a basis and dimension of each of the $R(T)$ and $N(T)$ , where<br>$T: R^3 \rightarrow R^3$ is defined by<br>$T(x_1, x_2, x_3) = (x_1 + 2x_2 - x_3, x_2 + x_3, x_1 + x_2 - 2x_3).$                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (10) |      |
| (b)               | Let $U$ and $W$ be 2-dimensional subsp                                                                                                                                                                                                                    | baces of $\mathbb{R}^3$ . Show that $U \cap W \neq \{0\}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (10) | (20) |
|                   | SEC                                                                                                                                                                                                                                                       | <u> TION-B</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |      |
| Q. No. 4(a)       | Find constants <i>a</i> and <i>b</i> such that the<br>$f(x) = \begin{cases} x^3, \\ ax + b, \\ x^2 + 2, \end{cases}$ is continuous for all <i>x</i> .                                                                                                     | function $f$ defined by<br>$if  0 \le x < -1$ ,<br>$if  -1 \le x < 1$ ,<br>$if  x \ge 1$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (10) |      |
| (b)               | Find the extrema of the function $f$                                                                                                                                                                                                                      | $(x, y) = 2 x^{2} + x y^{2} - 4x - 1.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (10) | (20) |
| Q. No. 5(a)       | Evaluate:<br>$\int_{0}^{\pi/4} \frac{\sec^2 \theta}{\tan x - \tan \theta}$                                                                                                                                                                                | $dx$ , $	heta > \pi/4$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (10) |      |
| (b)               | Find the area outside of the circle $r = 2$ (1)                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (10) | (20) |
|                   | $r = \mathcal{L}(1)$                                                                                                                                                                                                                                      | $+\cos \theta$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |      |

## **PURE MATHEMATICS**

Prove that the straight lines  $\frac{x-1}{2} = \frac{y+1}{-3} = \frac{z+10}{8}$  and  $\frac{x-4}{1} = \frac{y+3}{-4} = \frac{z+1}{7}$ Q. No. 6(a) (10)

> intersect. Also, find the point of intersection and equation of the plane passing through them.

(b) Discuss and sketch the following curve (10) 
$$y^2 = x^2 (4 - x^2)$$
.

## **SECTION-C**

Q. No. 7(a) Find the value of

Find the value of  

$$\oint \frac{\sin(\pi z^2) + \cos(\pi z^2)}{(z-1)(z-2)} dz$$
around the closed curve which is the circle  $|z| = 3$ .
(10)

- Prove that  $f(z) = \overline{z}$  is nowhere analytic. **(b)** (10)(20)
- Expand  $f(z) = \sin z$  in a Taylor series about  $z = \pi/4$  and determine the Q. No. 8(a) (10)region of convergence of this series.
  - **(b)** Using residue theorem, evaluate (10)(20) $\frac{1}{2\pi i} \oint \frac{e^{zt}}{z^2 \left(z^2 + 2z + 2\right)} dz$ around the closed curve which is the circle |z| = 3.

\*\*\*\*\*